

Synthesis and Characterization of a 2,4-Pentanedione-3-selenolato Pt(II) Complex. Oxidation Reaction of Tetrakis(triphenylphosphine)platinum(0) with 2,2,4,4-Tetraacetyl-1,3-diselenetane

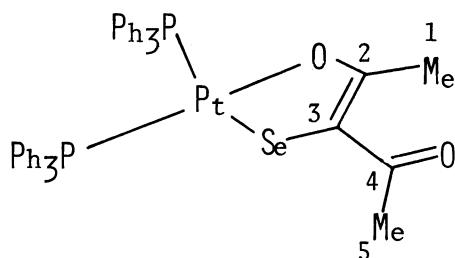
Shinsaku YAMAZAKI

Chemistry Laboratory, Kochi Gakuen College, 292 Asahi Tenjin-Cho, Kochi 780

A new Pt(II) complex of 2,4-pentanedione-3-selenolate dianion(Se-ac), $[\text{Pt}(\text{Se-ac-O, Se})(\text{PPh}_3)_2]$, has been prepared by reacting tetrakis(triphenylphosphine)platinum(0) with 2,2,4,4-tetraacetyl-1,3-diselenetane. The complex has been characterized from IR, ^1H , ^{13}C , and ^{31}P NMR spectroscopy.

The bis(β -diketones) linked by sulfur and selenium atoms between the two β -dicarbonyls, 2,3-dithio-1,1,4,4-tetraacetylbutane and 2,3-diseleno-1,1,4,4-tetraacetylbutane, are in dienol form^{1,2)} and they relatively readily undergo S-S, S-C, and Se-C bond cleavages in presence of OH^- in preference to Se-Se bond cleavage. In the previous papers, Pt(II) complexes of 2,4-pentanedione-3-thiolate(2-) with an (O, S)-chelate and 2,4-dioxo-3,3-pentanedithiolate(2-) and 2,4-dioxo-3,3-diselenolate(2-) with a (η^2 - M_2)(M=S, Se)-bond fashion have been prepared^{3,4)} by treating *cis*- $[\text{PtCl}_2(\text{P-Me}_2\text{Ph})_2]$ with the dienolic bis(β -diketones) in basic conditions. In the present paper, a new Pt(II) complex of 2,4-pentanedione-3-selenolate(2-) with an (O, Se)-chelate has been prepared from a novel oxidation reaction of $\text{Pt}(\text{PPh}_3)_4$ with the bis(β -diketones), 2,2,4,4-tetraacetyl-1,3-diselenetane which is in diketo form.²⁾ This complex could not have been obtained by the similar method following the preparation of the thiolato complex.

$\text{Pt}(\text{PPh}_3)_4$ in CHCl_3 *in situ* degassed of air in *vacuo* was added with an *equi*-molar quantity of 2,2,4,4-tetraacetyl-1,3-diselenetane. The solution, after stirring overnight, was reduced in volume under reduced pressure to \approx 10 cm^3 , and addition of diethylether and hexane to the solution gave an orange crude product (\approx 74% yield). The product was then developed on TLC(SiO_2) with CH_2Cl_2 -acetone. An eluate of an orange band in acetone gave an orange crystalline solid of the complex. The result of the elemental analysis was in agreement with the calculated values as $[\text{Pt}(\text{Se-ac})(\text{PPh}_3)_2](\text{Se-ac} = 2,4\text{-pentanedione-3-selenolate dianion})$. IR, ^1H , ^{13}C , and ^{31}P NMR of the complex are consistent with a 2,4-pentanedione-3-selenolate(2-), formed by a reduction of 2,2,4,4-tetraacetyl-1,3-diselenetane *via* its Se-C bond cleavages, bonding to Pt(II) with an (O, Se)-chelate and they are quite comparable to those of $[\text{Pt}(\text{S-ac-O, S})(\text{PMe}_2\text{Ph})_2]$.³⁾ Two ^1H NMR resonances arise


Table 1. IR, ^1H , ^{13}C , and ^{31}P NMR of $[\text{Pt}(\text{Se-ac-O, Se})(\text{PPh}_3)_2]$

IR(cm^{-1}) ^{a)}	^1H NMR ^{b)}	^{31}P NMR ^{c)}	^{13}C NMR{ppm, ()=Hz} ^{d)}
$\nu(\text{C=O})$	{ppm, ()=Hz}	{ppm, ()=	
$\nu(\text{C=C})$	$\delta\text{C}^5\text{H}_3$	$\delta\text{C}^1\text{H}_3$	[]=Hz
$\nu(\text{C-O})$			C-2 C-4 C-3 C-5 C-1
1614(s)	2.27(3) 1.90(3)	20.91 6.70	194.50 182.19 102.98 30.90 26.03
1592(m)	(1.52) (1.52)	(22.8)(22.8)	(d) (8.55, (dd) (1.83)(4.89)
1484(vs)		[2871.7][3610.2]	2.44)

a)Measured in CH_2Cl_2 . b)Measured in CDCl_3 . Chemical shifts are relative to SiMe_4 . $J(\text{P-H})$ are in parentheses. c)Measured in CDCl_3 . Chemical shifts are relative to $\text{P}(\text{OMe})_3$ at 140.0. $J(\text{P-P})$ and $J(^{195}\text{Pt-P})$ are in parentheses and brackets, respectively. d)Measured in CDCl_3 . Chemical shifts are relative to SiMe_4 . $J(\text{P-C})$ are in parentheses.

ing from Me-protons of the Se-ac(2-) in $[\text{Pt}(\text{Se-ac})(\text{PPh}_3)_2]$ exhibit that a structure of the complex has low symmetry in which the Se-ac²⁻ bonds Pt(II)

with an (O, Se)-chelate. Its ^{31}P NMR shows an AB spin system explicitly, as is expected from the ^1H NMR, with $J(^{195}\text{Pt-P})=2871$ and 3610 Hz. These

values are rather close to a *cis*-configuration for the two phosphorous atoms than a *trans* one. One of the $J(\text{Pt-P})$ with a relatively small value may be explained by a distortion in the bond angle P-Pt-P

deviating from an ideal angle 90° of a square planar structure, as found for $[\text{Pt}(\text{S-ac-0, S})(\text{PMe}_2\text{Ph})_2]$ ³⁾ and $[\text{Pt}(\text{n}^2\text{-Se}_2\text{-ac})(\text{PMe}_2\text{Ph})_2]$.⁴⁾ ^{13}C NMR of $[\text{Pt}(\text{Se-ac-0, Se})(\text{PPh}_3)_2]$ is consistent with a localized structure of the Se-ac²⁻ coordinating to Pt(II) with an (O, Se)-chelate. The IR spectrum of the complex, in fact, shows three characteristic absorption bands in which two absorption bands observed at 1484 and 1592 cm^{-1} were assigned due to $\nu(\text{C=O})$ and $\nu(\text{C=C})$, respectively, while a strong band at 1614 cm^{-1} is due to $\nu(\text{C=O})$. The relatively lower frequency region due to the carbonyl stretching at the present case is comparable with 1613 cm^{-1} observed for $[\text{Rh}(\text{acac-O}_1)(\text{CO})(\text{PPr}_3^i)_2]$ ⁵⁾ possessing an O-unidentate 2,4-pentanedione and 1621 cm^{-1} for $[\text{Pt}(\text{S-ac-0, S})(\text{PMe}_2\text{Ph})_2]$.³⁾

2,2,4,4-Tetraacetyl-

1,3-Diselenetane by reducing with *aq* HI undergoes its Se-C bond cleavages to afford 2,3-diseleno-1,1,4,4-tetraacetyl-butane with Se-Se bond.²⁾

$[\text{Pt}(\text{Se-ac-0, Se})(\text{PPh}_3)_2]$

may accordingly be

formed via two

reaction paths: one,

a reduction of 2,2,4,4-tetraacetyl-1,3-

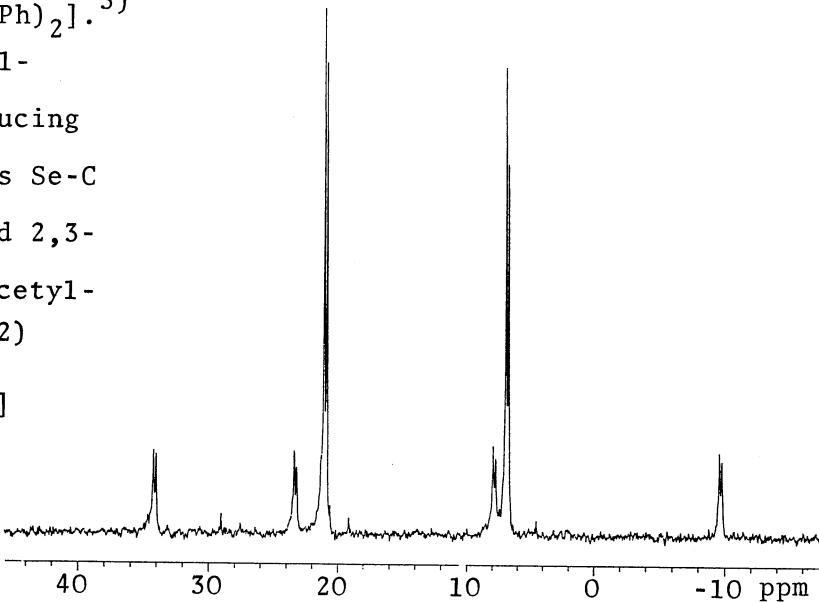
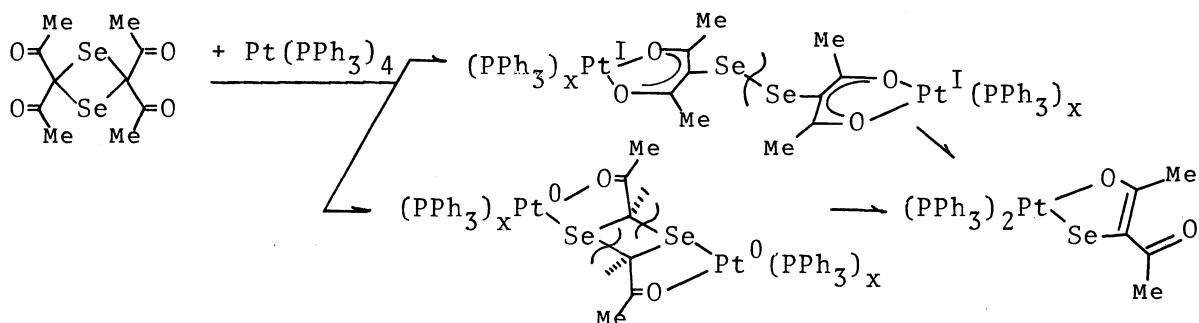



Fig. 1. ^{31}P NMR of $[\text{Pt}(\text{Se-ac-0, Se})(\text{PPh}_3)_2]$.

diselenetane by $\text{Pt}(\text{PPh}_3)_4$ forms 2,3-diseleno-1,1,4,4-tetraacetylbutane(2-), first, which may cross-links two Pt(I) nuclei with an $(\text{O}_2, \text{O}'_2)$ -chelate, as found for 1,1,2,2-tetraacetylene complexes,⁶⁾ and a succeeding Se-Se bond cleavage occurs via an electron transfer resulting a Pt-O bond dissociation and a concurrent Pt-Se bond formation; the other, a dinuclear Pt(0) complex cross-linked by 2,2,4,4-tetraacetyl-1,3-diselenetane with an (O, Se) -chelates undergoes two electron transfers by one step from the respective metals to the ligand accompanying simultaneous Se-C bond cleavages.

The author appreciates Dr. H. Tani (Advanced Instrumentation Center for Chemical Analysis, Ehime University) for obtaining NMR spectra.

References

- 1) D. H. Dewar, J. E. Fergusson, R. P. Hentshell, C. J. Wilkins, and P. P. Williams, *J. Chem. Soc.*, 1964, 688.
- 2) G. T. Morgan and H. D. K. Drew, *J. Chem. Soc.*, 117, 1456 (1920).
- 3) S. Yamazaki, T. Ama, M. Hojo, and T. Ueno, *Bull. Chem. Soc. Jpn.*, 62, 4036 (1989).
- 4) S. Yamazaki, T. Ueno, and M. Hojo, *Bull. Chem. Soc. Jpn.*, 64, 1404 (1991).
- 5) S. Yoshida, Y. Ohgomori, Y. Watanabe, K. Honda, M. Goto, and M. Kurahashi, *J. Chem. Soc., Dalton Trans.*, 1988, 895.
- 6) S. Yamazaki, T. Ama, and Z. Taira, *Polyhedron*, 7, 353 (1988).

(Received April 15, 1991)